
Yaffs Robustness and Testing

Charles Manning

2017-06-07

Many embedded systems need to store critical data, making reliable file systems an
important part of modern embedded system design. That robustness is not achieved
through chance. Robustness is only achieved through design and extensive testing to
verify that the file system functions correctly and is resistant to power failure.

This document describes some of the important design criteria and design features
used to achieve a robust design. The test methodologies are also described.

Table of Contents
 1 Background...2
 2 Flash File System considerations..3
 3 How Yaffs achieves robustness and performance...5
 4 Testing...8

4.1 Power Fail Stress Testing...8
4.2 Testing the Yaffs Direct Interface API..9
4.3 Linux Testing..9
4.4 Fuzz Testing..9
4.5 Software checking..9
4.6 Open Source Usage..10
4.7 Universities...10

 5 Conclusions...10
 6 References...11

1 Background
Cheaper CPUs and flash have driven up embedded system functionality. These increased
functions often require file system storage.

The original flash file storage mechanisms were the use of a flash translation layer (FTL) – a
driver model which makes flash memory appear as a disk drive – in conjunction with a disk-
oriented file system such as FAT. This storage methodology has various performance and
robustness limitations, leading to the development of file systems designed specifically for
flash memory. These are known as flash file systems.

Flash memory has various limitations when compared with a disk. For example, flash mem-
ory pages cannot be individually re-written but instead the whole block must be erased and
rewritten with the modified page. Typical FTL achieve this with various logical to physical
mapping schemes. Thus emulating disk-like behaviour on flash memory adds an extra layer of
software which slows down write performance. Worse still, it adds extra state which is prone
to corruption due to power failure.

A typical FTL-based solution will use a file system such as FAT. FAT always stores tables in
the same disk blocks and must thus change the same blocks often. Since flash memory blocks
can endure a limited number of write/erasure cycles, the FTL must move the physical location
of the block around to prevent the high traffic blocks from wearing out. This requires wear
levelling – a further burden.

Some systems try to mitigate against the performance penalties by caching a lot of data to
reduce writes. While this can go some way towards reducing the apparent write time, it does
make the solution prone to data loss in the event of a power failure.

As well as limitations, flash memory also has certain advantages when compared to rotating
media. There is no spin up time, making it more responsive. There is no read head so there is

Page 2/10 of Yaffs Robustness and Testing, 2012-03-07

no read penalty if data is fragmented. Flash file systems can be designed to exploit these
advantages.

True flash file systems1, on the other hand, are a single code body designed to take the fea-
tures and limitations of flash into consideration. Flash file systems can thus be far more “flash
friendly”. Well designed flash file systems will avoid using “flash unfriendly” techniques such
as allocation tables and in-place rewriting.

Yaffs is a flash file system, originally designed specifically for NAND flash though also used
with great success on NOR flash too. Yaffs development started in 2001 when 32Mbytes of
flash was considered large. Since then, Yaffs has been expanded to work properly with differ-
ent flash types and far larger memory arrays (many GBytes).

Yaffs was originally deployed in Linux, but was written in an OS neutral way, mainly to facil-
itate modular development and testing. This turned out to be useful when we had requests to
port Yaffs to other operating systems. Since then, Yaffs has been used in many different prod-
ucts in a wide variety of applications from consumer products such as cell phones and sewing
machines to aerospace, industrial and medical applications including process control, building
management, communications infrastructure and many others.

Yaffs is not tied to any endian ordering and has been used on a wide variety of architectures
including ARM, MIPS, PowerPC, x86, some DSPs. Yaffs has been deployed using a wide
variety of compilers from many different vendors.

Nor is Yaffs tied to any particular operating system. Yaffs has been used with Linux, eCOS,
Windows Embedded Compact (previously Windows CE), VxWorks and others.

2 Flash File System considerations
There are many criteria that are important when selecting a flash file system. These are some
that out customers have found to be most important:

● Robustness: It really is not worth having a file system that loses or corrupts data and
prevents the system from working properly. Some flash file systems are only robust
when synced (flushed) after files have been written. That requires extra code, slows
the system and leaves the file system in a non-deterministic state until the sync has
been completed. Some file systems need to perform disk repair operations (eg. check
disk) in the event of a power failure. This can add considerable time to the start up,
preventing the system from being operational.

● Performance: In many embedded system designs, slow read/write performance can
delay tasks and cause system degradation or even failure. It is thus important that
read/write performance be acceptable. Note that many flash file systems need to per-
form extra actions such as garbage collection. In some cases these actions can cause
the file system to stall for a long time. It is thus important that these factors be taken
into consideration. Performance can sometimes be improved by adding a write

1 Note that flash translation layers (FTLs) are erroneously refered to as flash file systems. For example, despite
the name, M-Systems TrueFFS is not a flash file system but a flash translation layer (FTL).

Page 3/10 of Yaffs Robustness and Testing, 2012-03-07

caching layer. These caching layers make the file system calls (write etc) proceed
quickly, without actually writing the data to flash. This is a two-edged sword as data in
the cache will be lost on a power failure and syncing the file system will take a long
time. Thus, most flash file systems offer either speed or robustness – not both.

● Proven: It is very easy for a file system vendor to provide a list of claims saying
“100% power safe” or similar, but what evidence do they have to back this up? All file
systems, including flash file systems, are complex bodies of software with extremely
complex state. They need very significant testing to prove that they work correctly.

● Portable: Software is a huge investment and it is increasingly important to be able to
port the software between OSs and CPU architectures. Most flash file systems are lim-
ited to a single operating system which makes it difficult to migrate software between
different platforms. In Yaffs' case portability extends to being able to seamlessly
migrate the core Yaffs code into a test framework which enhances testing.

3 How Yaffs achieves robustness and performance
Yaffs was designed from the ground up specifically to work well with NAND flash. The
author had already developed another flash file system, so was already familiar with the
design challenges of flash.

As Yaffs is not just adapting a disk-oriented file system to work with flash it is not surprising
that Yaffs is very different in design to most other file systems. The key difference is that
Yaffs is a log-structured. file system2.

In essence, a log structured file system writes file system changes as a sequential log. The log
structure is particularly suitable for various reasons including:

● All writes are at the end of the log. When a file is modified, there is no need to erase
and rewrite a part of the flash. Changes are just appended to the log. Thus there is no
need to erase and copy old data just to change some existing pages in a file. This tends
to make writes much faster. There is no need to do a lot of caching to achieve perfor-
mance. Data can be written to the log immediately meaning that sync time is very low.
Data robustness is improved dramatically.

● There are no allocation tables or similar. This reduces the amount of data being written
to the flash, and that there are no tables to corrupt.

● Since all writes are to the end of the log there are no “high traffic” blocks. This means
Yaffs only needs a simpler wear leveling strategy.

● In the event of a power failure, the file system state is easily re-created from the log.
This means there is no need to perform disk repair operations to correct for an unclean
shutdown.

2 This document only provides a brief overview of the Yaffs architecture and design. The “How Yaffs Works”
document provides an in-depth explanation of the Yaffs design and architecture.

Page 4/10 of Yaffs Robustness and Testing, 2012-03-07

So why don't we see many log structured file systems for disk file systems? The answer to this
is that log file systems tend to spread the writes around on the media. That is typically very
problematic for mechanical storage which must physically move the read/write head from one
location to another making the access time very slow. Of course that does not apply for flash
memory. By designing specifically for flash, Yaffs can ignore this issue and write fast.

Many flash file systems need make a compromise between robustness against performance.
Thanks to the log structure, Yaffs does not need to. Yaffs can provide high performance with-
out giving up on robustness.

Those familiar with log structured file system design will know that some log structured file
systems have problems with garbage collection3. Garbage collection is used to clean up the
log and make more free space available. Some log structured file system designs did not pay
enough attention to garbage collection and can stall for a considerable time while garbage col-
lection happens. Yaffs was designed differently. The potential impact of garbage collection
was considered throughout the Yaffs design process. As a result, Yaffs has a very simple
garbage collection model that allows a lot of flexibility in garbage collection scheduling. This
prevents the garbage collection from making the file system unresponsive.

Most file systems are developed within the context, and framework of, a single operating sys-
tem. This typically makes the code difficult to explore, debug and port. Yaffs on the other
hand was developed from the start inside a portable development/testing framework. Yaffs is
then ported to various operating systems through the addition of glue code.

3 Refer to the “How Yaffs Works” document to understand the need for garbage collection and how Yaffs does
garbage collection.

Page 5/10 of Yaffs Robustness and Testing, 2012-03-07

There are many benefits to this approach:

● A development framework runs in user space which provides a richer development
environment than inside an OS kernel. It is much easier to attach debuggers and per-
form logging and create reproducible testing.

● The code is structured to be portable. That makes it relatively easy to port to a new OS
or RTOS with a high level of confidence.

● There is a choice of porting interfaces allowing more flexibility to determine which
porting method will be simpler. For example, the Linux wrapper accesses the Yaffs
core directly while the Windows CE wrapper access the Yaffs Direct Interface4.

● Each different environment provides different test tools. For example, Linux provides
a raft of file system test tools that do different kinds of testing to the power fail test

4 For more information on Yaffs Direct Interface, please read the various documents on the subject.

Page 6/10 of Yaffs Robustness and Testing, 2012-03-07

Portable
yaffs
“core”

Yaffs Direct

Test Framework

Portable
yaffs
“core”

Yaffs Direct

RTOS application

Portable
yaffs
“core”

Yaffs Direct

Windows CE

WinCE wrapper

Portable
yaffs
“core”

Linux wrapper

Linux

harness. Since the vast majority of the code is in the portable Yaffs core, that code gets
the advantage of all test methods combined. The many millions of Android phone
users that use Yaffs-based devices are helping test the core code that is also used on a
wide variety of different operating systems and a wide range of different device types.

● Its Open Source status means any interested person can take a version from git and test
it to make sure that it meets their needs.

4 Testing
It is all very well to design software to be robust, but it needs thorough testing to build confi-
dence in the software and in the code authors and supplier.

File systems have incredibly complex state so it is not at all surprising that operating system
designers find file systems some of the most challenging code to test.

There is no single test methodology that can test all cases, and exhaustive state testing is
impossible. The best we can do is to have a suite of test methodologies that combine to pro-
vide thorough testing.

Approximately 60% of Yaffs development effort is directed towards testing and improving the
test environment. We are constantly researching new methodologies.

The following are descriptions of the most important test strategies used in Yaffs.

4.1 Power Fail Stress Testing

By far the most important consideration in Yaffs testing is that it is robust to corruptions
caused by power failure. We want Yaffs to provide the basis for reliable products in typical
embedded system environments.

The first power fail testing was done by companies integrating Yaffs into their products. Some
of these built test jigs which would automatically interrupt power while running a real hard-
ware device. This approach is better than nothing, but has some limitations:

● It is relatively costly to set up. Flash has a limited lifetime meaning that test devices
wear out with time and must be replaced.

● It is relatively slow since each cycle takes many seconds to boot, run the application
for a while and then reboot.

● Many, and perhaps most, of the power interruptions will happen at times when the file
system is inactive and thus be wasted cycles.

In 2008 we developed a simulated power-fail-test environment. This simulates power failures
using simulated flash memory while running various consistency checks.

The benefits of a software-based test harness are numerous:

Page 7/10 of Yaffs Robustness and Testing, 2012-03-07

● The test harness controls the point at which the simulated power failures happen. That
means every test cycle counts.

● No special hardware is required.

● Test loops run faster. A quad-core computer can simulate ten to twenty power failures
per second. That means about a million power failure simulations per day.

The effectiveness of the new software based testing is dramatic.. A few times we have tested
some user-suggested changes that had passed a week or more of real-world power fail testing
only to have problems caught by the software simulation in a matter of minutes.

We regularly run the power fail simulation test over a weekend, testing millions of power fail
cycles.

4.2 Testing the Yaffs Direct Interface API

Yaffs Direct Interface (YDI) is a POSIX-like wrapper around the Yaffs core. This provides a
set of function calls, yaffs_open(), yaffs_write() and the like.

Each function can return numerous error codes and has to handle numerous different parame-
ters.

Although there were already significant tests for the YDI, an extensive test harness was devel-
oped in 2010 to comprehensively test each of the error paths and generate all of the required
errors.

This provides a high level of confidence that the test interfaces do what they should and that
POSIX-like functionality provides relatively clean porting of existing code.

4.3 Linux Testing

The main purpose of the Linux testing is to test the Linux wrapper code. It does, however, still
exercise the Yaffs core code differently to other testing and thus adds to the test fabric.

The Linux testing does not do power fail testing but instead tests other aspects such as clean
shutdowns, cache integrity and write performance. This gives a useful way to assess the
effects of modifications.

Linux testing is done on both real hardware and on simulated hardware using the Linux mtd
nand simulator.

As with the Power Fail Stress Testing described above, the simulated testing is done using a
scrippted environment which is typically run for a few days at a time.

4.4 Fuzz Testing

Fuzz testing deliberately corrupts the flash image and ensures that Yaffs still mounts. This is
done to ensure that Yaffs does not crash on corrupted data.

Page 8/10 of Yaffs Robustness and Testing, 2012-03-07

Clearly fuzz testing can corrupt the contents of individual files (that's its job), but the file sys-
tem integrity should not be compromised.

4.5 Software checking

Although code checking is not actual testing per se, it does help to verify code changes.

The Yaffs code has been checked with Coverity5 – a market leader in code checking.

We are investigating the use of KLEE and other tools.

4.6 Open Source Usage

Open Source usage of Yaffs opens it up to testing by the many different projects. Many of
these participate in some way with the Yaffs mailing list, helping to uncover issues and gener-
ally provide feedback.

Each different project uses Yaffs in a different way, meaning that a wider range of operation
sequences are tested.

4.7 Universities

Over its lifetime, Yaffs has been used as a teaching framework for various university course in
many different counties around the world.

For example, Oregon State and Utah State Universities have used Yaffs as a test bench for
their post-graduate software testing courses. They essentially test the test tools by injecting
errors into the Yaffs code and seeing if these are discovered by the test tools they are testing.
Of course this has the side effect of running these tests over the original Yaffs code too.

Those interested in test methods are encouraged to read some of the university papers in the
references of this document.

We expect to adopt and extend some of the Oregon State ideas and use these to extend our in-
house test suite.

5 Conclusions
Software development is an iterative process of design and testing. Robust software solutions
are only possible with extensive testing.

Embedded systems increasingly need to store data in file systems as a critical part of their
operation. It is thus important to have a file system that is predictable and robust to power
failure and similar interruptions.

Yaffs has been designed from scratch to be robust to power failure and that robustness has
been verified with a multi-pronged test strategy that is continuously being improved.

5 http://www.coverity.com

Page 9/10 of Yaffs Robustness and Testing, 2012-03-07

6 References
Charles Manning, “How Yaffs Works”.
http://users.actrix.co.nz/manningc/yaffs-docs/HowYaffsWorks.pdf

A. Groce et al, “Swarm Testing” from Oregon State University, School of EE and Computer
Science and Utah State University, School of Computing, 2011.
http:// www.ct.utah.edu/~regehr/papers/swarm12.pdf

Wu CH, “Efficient Initialization and Crash Recovery for. Log-based File Systems over Flash
Memory” from National Taiwan University, Dept of Computer Science, 2006.
http://www.cis.nctu.edu.tw/~lpchang/papers/SAC_wu_sac06.pdf

Page 10/10 of Yaffs Robustness and Testing, 2012-03-07

http://users.actrix.co.nz/manningc/yaffs-docs/HowYaffsWorks.pdf
http://www.ct.utah.edu/~regehr/papers/swarm12.pdf
http://www.ct.utah.edu/~regehr/papers/swarm12.pdf

	1 Background
	2 Flash File System considerations
	3 How Yaffs achieves robustness and performance
	4 Testing
	4.1 Power Fail Stress Testing
	4.2 Testing the Yaffs Direct Interface API
	4.3 Linux Testing
	4.4 Fuzz Testing
	4.5 Software checking
	4.6 Open Source Usage
	4.7 Universities

	5 Conclusions
	6 References

